IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Data Association in Multi Target Tracking Using Cross Entropy Based Algorithms

نویسندگان

  • Daniel Sigalov
  • Nahum Shimkin
چکیده

Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult computational challenges related to the measurement-to-track data association problem. Different approaches have been proposed to tackle this problem, including various approximations and heuristic optimization tools. The Cross Entropy (CE) and the related Parametric MinxEnt (PME) methods are recent optimization heuristics that have proved useful in many combinatorial optimization problems. They are akin to evolutionary algorithms in that a population of solutions is evolved, however generation of new solutions is based on statistical methods of sampling and parameter estimation. In this work we apply the Cross-Entropy method and its recent MinxEnt variant to the multi-scan version of the data association problem in the presence of misdetections, false alarms, and unknown number of targets. We formulate the algorithms, explore via simulation their efficiency and performance compared to other recently proposed techniques, and show that they obtain state-of-the-art performance in hard scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008